Loop-Nodal and Point-Nodal Semimetals in Three-Dimensional Honeycomb Lattices
نویسندگان
چکیده
منابع مشابه
Weyl and nodal ring magnons in three-dimensional honeycomb lattices
We study the topological properties of magnon excitations in a wide class of three dimensional (3D) honeycomb lattices with ferromagnetic ground states. It is found that they host nodal ring magnon excitations. These rings locate on the same plane in the momentum space. The rings can be gapped by Dzyaloshinskii-Moriya (DM) interactions to form two Weyl points with opposite charges. We explicitl...
متن کاملNodal-link semimetals
Topological phases of matter have been among the most active research subjects in condensed matter physics. They can be broadly classified as two major classes. The first class of phases, including topological insulators and superconductors[1–6], and other symmetry protected topological phases[7], have gapped bulks with nontrivial topological structures characterized by topological invariants[8...
متن کاملQuantum transport of disordered Weyl semimetals at the nodal point.
Weyl semimetals are paradigmatic topological gapless phases in three dimensions. We here address the effect of disorder on charge transport in Weyl semimetals. For a single Weyl node with energy at the degeneracy point and without interactions, theory predicts the existence of a critical disorder strength beyond which the density of states takes on a nonzero value. Predictions for the conductiv...
متن کاملNew Anti-Nodal Monoclonal Antibodies Targeting the Nodal Pre-Helix Loop Involved in Cripto-1 Binding
Nodal is a potent embryonic morphogen belonging to the TGF-β superfamily. Typically, it also binds to the ALK4/ActRIIB receptor complex in the presence of the co-receptor Cripto-1. Nodal expression is physiologically restricted to embryonic tissues and human embryonic stem cells, is absent in normal cells but re-emerges in several human cancers, including melanoma, breast, and colon cancer. Our...
متن کاملInteracting Dirac liquid in three-dimensional semimetals
We study theoretically the properties of the interacting Dirac liquid, a novel three-dimensional many-body system which was recently experimentally realized and in which the electrons have a chiral linear relativistic dispersion and a mutual Coulomb interaction. We find that the “intrinsic” Dirac liquid, where the Fermi energy lies exactly at the nodes of the band dispersion, displays unusual F...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2016
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.116.127202